AMSER Case of the Month: September 2018

47yo F with Vision Loss

Erik Lawrence, MS4 Columbia University Vagelos College of Physicians & Surgeons

Mentor: Dr. Pallavi Utukuri, CUMC Dept of Radiology

Patient Presentation

- 47 yo F presents for evaluation of progressive vision loss over the course of one year, worsening over the past 2-3 months, with decreased peripheral vision.
 - Associated falls at home, intermittent headaches, poor sleep, and irregular menses.
- PMHx: None
- FHx: Non-contributory
- Physical Exam
 - Bitemporal Hemianopsia on visual field testing

Pertinent Labs

- Pituitary Hormone Testing
 - FSH 8.9 mlU/ml
 - LH 4.6 mlU/ml
 - ACTH 44 pg/ml
 - TSH 1.05 mlU/ml
 - Prolactin 147 ng/ml

What Imaging Should We Order?

ACR Appropriateness Criteria: Non ischemic Visual Loss with chiasm or post-chiasm symptoms

Variant 7: Nonischemic visual loss. Chiasm or post-chiasm symptoms. Initial imaging.		
Procedure	Appropriateness Category	RRL
MRI head without and with IV contrast	Usually Appropriate	0
MRI head without IV contrast	Usually Appropriate	0
CT head with IV contrast	May Be Appropriate	***
CT head without and with IV contrast	May Be Appropriate	***
CT head without IV contrast	May Be Appropriate	***
CTA head and neck with IV contrast	May Be Appropriate	***
MRA head and neck without and with IV contrast	May Be Appropriate	0
CT venography head with IV contrast	May Be Appropriate	***
MR venography head without and with IV contrast	May Be Appropriate	0
MR venography head without IV contrast	May Be Appropriate	0
MRA head and neck without IV contrast	May Be Appropriate	0
CT orbits with IV contrast	Usually Not Appropriate	***
CT orbits without IV contrast	Usually Not Appropriate	***
MRI orbits without and with IV contrast	Usually Not Appropriate	0
MRI orbits without IV contrast	Usually Not Appropriate	0
Arteriography cervicocerebral	Usually Not Appropriate	***
CT orbits without and with IV contrast	Usually Not Appropriate	***
X-ray orbit	Usually Not Appropriate	*

This imaging modality was ordered by the clinician.

Findings (unlabeled)

Findings (labeled)

Coronal T1 Pre-Contrast

Red Arrow: 3.2 x 3.7 x 3.1 cm suprasellar mass with mass effect on surrounding optic chiasm and optic nerves. Coronal T1 Post-Contrast

Yellow Arrow: Mass is Homogeneously enhancing.

Coronal T2

Blue Arrow: Peripheral rim of T2 enhancement, suggesting mass is extra-axial.

Sagittal T1 Post-Contrast

MSER

Green Arrows: Dural Tail

Findings (unlabeled)

Findings (labeled)

Sagittal T1 Pre-Contrast

Sagittal T1 Post-Contrast

Pink Arrows: Preservation of Pituitary Gland

Final Dx:

Suprasellar Meningioma (surgically proven)

Differential of a Suprasellar Mass

- Mnemonic: SATCHMOE
 - Sellar Tumor (Pituitary Adenoma), Sarcoid
 - Aneurysm
 - Teratoma or Tuberculosis (granulomatous diseases)
 - Craniopharyngioma, Cleft Cyst (Rathke), Chordoma
 - Hypothalamic glioma, Hamartoma of Tuber Cinereum, Histiocytosis
 - Meningioma, Metastasis
 - Optic Nerve Glioma
 - Epidermoid/Dermoid/Teratoma

Meningioma

- Typically benign extra-axial mass arising from meninges.
- MRI is modality of choice.
- Homogeneously enhancing on T1 with IV gadolinium contrast.
- Classic Imaging Findings
 - Dural Tail: 52-78% of cases, Thickened dura adjacent to the lesion.
 - Arterial Narrowing: Useful for differentiating from pituitary adenomas, which typically push arteries away rather than narrowing them.
- Treatment
 - Surgical Excision

References:

Harisinghani G, Mukesh, Chen W, John, and Weissleder Ralph. Primer of Diagnostic Imaging. Mosby/Elsevier, 2011 Chapter 6, 377-456.

Takeguchi T, Miki H, Shimizu T et-al. Evaluation of the tumor-brain interface of intracranial meningiomas on MR imaging including FLAIR images. Magn Reson Med Sci. 2003;2 (4): 165-9.

Wen M, Jung S, Moon KS et-al. Immunohistochemical profile of the dural tail in intracranial meningiomas. Acta Neurochir (Wien). 2014;156 (12): 2263-73.

Yousem, David M, and Robert I. Grossman. *Neuroradiology: The Requisites*. Philadelphia, PA: Mosby/Elsevier, 2010.

