AMSER Case of the Month February 2021

Newborn male presenting with respiratory distress

Shama Khan, MS4
Drexel University College of Medicine

Robin Sobolewski, MD Matthew Hartman, MD Allegheny Health Network

Patient Presentation

HPI: Newborn male born at 38 weeks via SVD presenting with respiratory distress

Prenatal Hx: Lagging fetal growth EFW: 2.7 kg (~9th percentile)

Birth Hx: SROM with bloody fluid; Presentation: LOA, SVD; Apgars: 5 @ 1min & 8 @ 5min; intubated at 1 min of life

Maternal Hx: 34 y/o white female G3P2002 with hx of anxiety treated with Zoloft and prior precipitous vaginal delivery

Prenatal Labs: RPR nonreactive, Hep B (-), Rubella immune, Gonorrhea (-), Chlamydia (-), HIV (-), HCV unknown, Blood Type: O+ Rh-

Physical Exam & Pertinent Labs

Physical Exam:

Vitals: HR: 130s Wt: 2580g (5lb 8oz) (4th percentile)

Mechanical Respiratory Support: SpO2: >90%, PEEP: 6, RR: 30, FiO2: 50%

Lungs: Moderate subcostal retractions, B/L bowel sounds auscultated, BS over left hemithorax

CV: Normal S1 & S2, RRR, PMI displaced to right, pulses adequate, capillary refill ~3-4 secs

Abd: Soft, flat-scaphoid, no masses or hepatosplenomegaly

Labs: ABG: pH 7.204 PaCO2 44.6 PaO2 45.3 HCO3 17.6

CBC w/ diff: Hgb 12.9, Hct 37.8, RBC 3.40

What Imaging Should We Order?

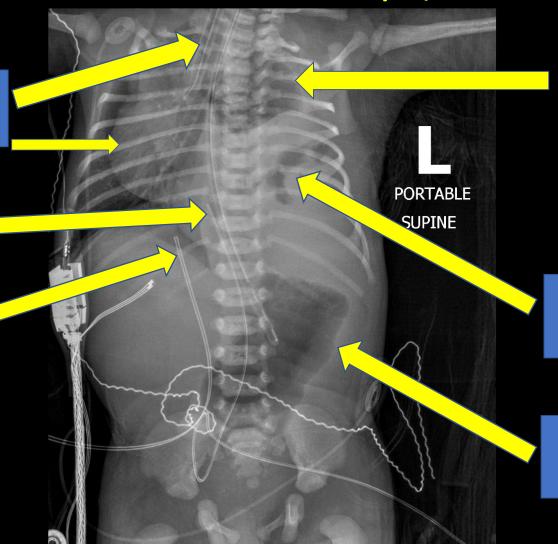
Select the applicable ACR Appropriateness Criteria

<u>Variant 2:</u> Acute respiratory illnesses in immunocompetent patients with positive physical examination, abnormal vital signs, organic brain disease, or other risk factors. Initial imaging.

Procedure	Appropriateness Category	Relative Radiation Level
Radiography chest	Usually Appropriate	€
US chest	May Be Appropriate	0
CT chest with IV contrast	Usually Not Appropriate	**
CT chest without and with IV contrast	Usually Not Appropriate	⊕ ⊕ ⊕
CT chest without IV contrast	Usually Not Appropriate	₩ ₩ ₩
MRI chest without and with IV contrast	Usually Not Appropriate	0
MRI chest without IV contrast	Usually Not Appropriate	0

This imaging modality was ordered by the NICU team along with abdominal radiograph

Chest Abdomen X-Ray (unlabeled)



Chest Abdomen X-Ray (labeled)

Mediastinum & ET tube shifted to right

Umbilical Arterial Catheter in Descending Aorta displaced to right

Umbilical Venous Catheter in IVC displaced to right

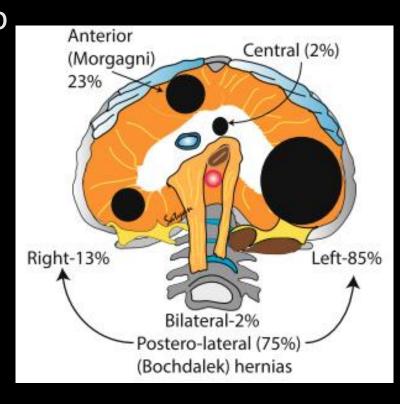
Hypoplastic Left Lung

Air-filled bowel loops in left hemithorax

Gaseous distension of stomach (normally positioned)

Final Dx:

Left-sided Congenital Diaphragmatic Hernia


Case Discussion

Congenital Diaphragmatic Hernia: Defect in the diaphragm resulting in abdominal contents moving into the thoracic cavity

Epidemiology: 0.8-5/10,000 births depending on population

Etiology:

- Multifactorial
- Failure of fusion of a pleuroperitoneal canal during organogenesis
- Can be an isolated defect or associated with pulmonary hypoplasia, aneuploidy, neural tube defects, congenital cardiac anomalies, Cornelia de Lange Syndrome, and Fryns Syndrome

Case Discussion (cont.)

Radiographic Findings:

- Antenatal Ultrasound* bowel loops absent in abdomen, liver herniating into thorax, decreased abdominal circumference, and stomach and bowel present at same transverse level as heart
- Fetal MRI* further assess hernia and pulmonary hypoplasia after U/S
- Radiography after delivery with features of an indistinct diaphragm, scaphoid abdomen, bowel within hemithorax, deviation of lines and tubes, and mediastinal shift

^{*} Can be used to calculate observed-to-expected lung to head ratio to assess for degree of pulmonary hypoplasia and probability of survival

Case Discussion (cont.)

Antenatal Management

- Corticosteroids prior to delivery of preterm infants to help with lung maturation
- Percutaneous fetal endoluminal tracheal occlusion (clinical trial)
- Delivery at tertiary care center with access to NICU, ECMO, and pediatric surgeons

Postnatal Management

- Intubation and mechanical support
- OG/NG tube to decompress bowel
- Manage pulmonary HTN
- Surgical repair (ultimate treatment)

References:

Agrawal, Rishi, Jin, Tee Yu, et al. "Congenital Diaphragmatic Hernia: Radiology Reference Article." *Radiopaedia Blog RSS*, radiopaedia.org/articles/congenital-diaphragmatic-hernia-1?lang=us.

Chandrasekharan, P.K., Rawat, M., Madappa, R. *et al.* Congenital Diaphragmatic hernia – a review. *matern health, neonatol and perinatol* **3,** 6 (2017). https://doi.org/10.1186/s40748-017-0045-1

Jokerst C et al. ACR Appropriateness Criteria® Acute Respiratory Illnesses in Immunocompetent Patients. Available at https://acsearch.acr.org/docs/69446/Narrative/ American College of Radiology. (Accessed December 14, 2020)

Krisa Van Meurs, M. D., & Short, B. L. (1999). Congenital diaphragmatic hernia: the neonatologist's perspective. *NeoReviews*, e79.

