AMSER Case of the Month January 2021

Radiographic Investigation of an Ileal Conduit Cooper University Hospital | Diagnostic Radiology

Matthew Delancy, MS4 | Cooper Medical School of Rowan University Howard Roth, MD | Cooper University Hospital

Pauline Germaine, DO | Cooper University Hospital

Patient Presentation: a 66 y/o male with...

Pertinent PMHx

- Urothelial cell bladder carcinoma
 - TURBT, multiple tumors. 70% of bladder and prostatic urethra. HG T-1
- Prostatic adenocarcinoma
- COPD, HTN, HLD, Spinal Stenosis
- SurgHx
 - Cystoprostatectomy, 2016
 - Pelvic lymph node dissection
 - Ileal conduit c/b SBO and urine leak of proximal conduit
 - Incisional Hernia Repair, Parastomal 2016
- SocialHx
 - 45 pack-years; last 2018

Hospital Admission; OSH Transfer

- P/w Intermittent, "intense" b/l flank pain
 - +ve: Nausea/ Vomiting
 - -ve: Fever, changes in vision, angina, dyspnea, falls
- From OSH transfer notes
 - Hypotensive
 - Leukocytosis 22.5
 - AKI Cr 2.8
 - UTI
 - CT showing concern for obstruction at left ureteroenteric anastomosis

Pertinent Labs

- Cr 2.48 mg/dL
- WBC 22.5
- UA
 - +3 LE, +3 Blood, +1 Protein
- Urine Microanalysis
 - >180 WBC/hpf
 - 38 RBC/hpf

What Imaging Should We Order?

- s/p radical cystectomy
- CT from OSH showed hydroureteronephrosis
- Concern for stricture or obstructing calculus

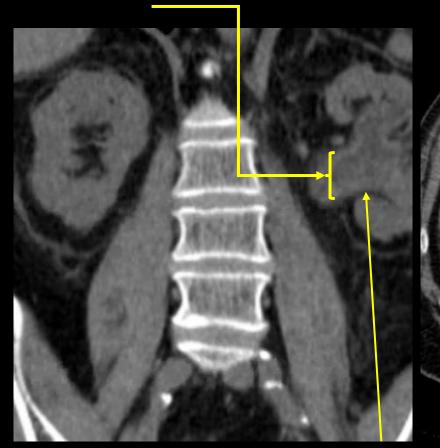
→Retrograde flow imaging (loopogram), ideal modality to identify possible anastomotic stricture s/p urinary diversion

ACR Appropriateness Criteria

Variant 3: Muscle-invasive bladder cancer with or without cystectomy. Post-treatment surveillance.						
Procedure	Appropriateness Category	Relative Radiation Level				
Radiography chest	Usually Appropriate	•				
Fluoroscopy abdomen loopogram	Usually Appropriate	ଢଢଢ				
MRI abdomen and pelvis without and with IV contrast	Usually Appropriate	0				
MRU without and with IV contrast	Usually Appropriate	0				
CT abdomen and pelvis with IV contrast	Usually Appropriate	•				
CTU without and with IV contrast	Usually Appropriate	€€€€				
MRI abdomen and pelvis without IV contrast	May Be Appropriate (Disagreement)	0				
CT chest with IV contrast	May Be Appropriate	€€€				
CT chest without IV contrast	May Be Appropriate	***				
CT abdomen and pelvis without and with IV contrast	May Be Appropriate (Disagreement)	****				
FDG-PET/CT skull base to mid-thigh	May Be Appropriate	€€€€				
US pelvis (bladder)	Usually Not Appropriate	0				
Radiography intravenous urography	Usually Not Appropriate	666				
CT abdomen and pelvis without IV contrast	Usually Not Appropriate	♥♥♥				
CT chest without and with IV contrast	Usually Not Appropriate	\$\$\$				

This imaging modality was ordered by attending urologist

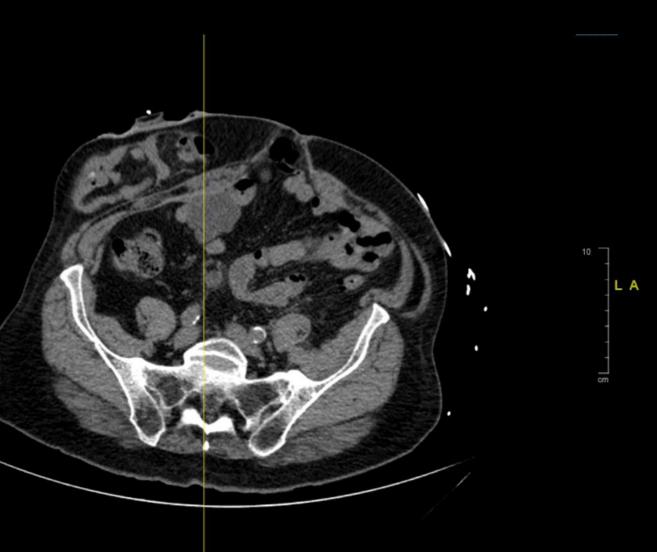
Prior CT Findings (unlabeled)



Findings: (labeled)

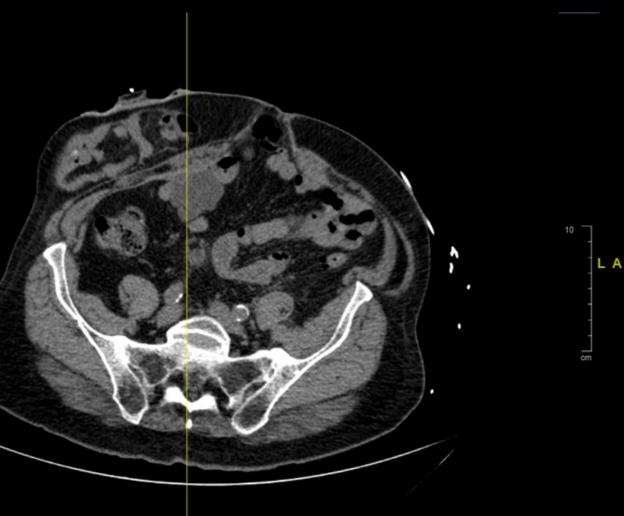
Pelviectasis, greater on left

Parastomal herniation of small bowel



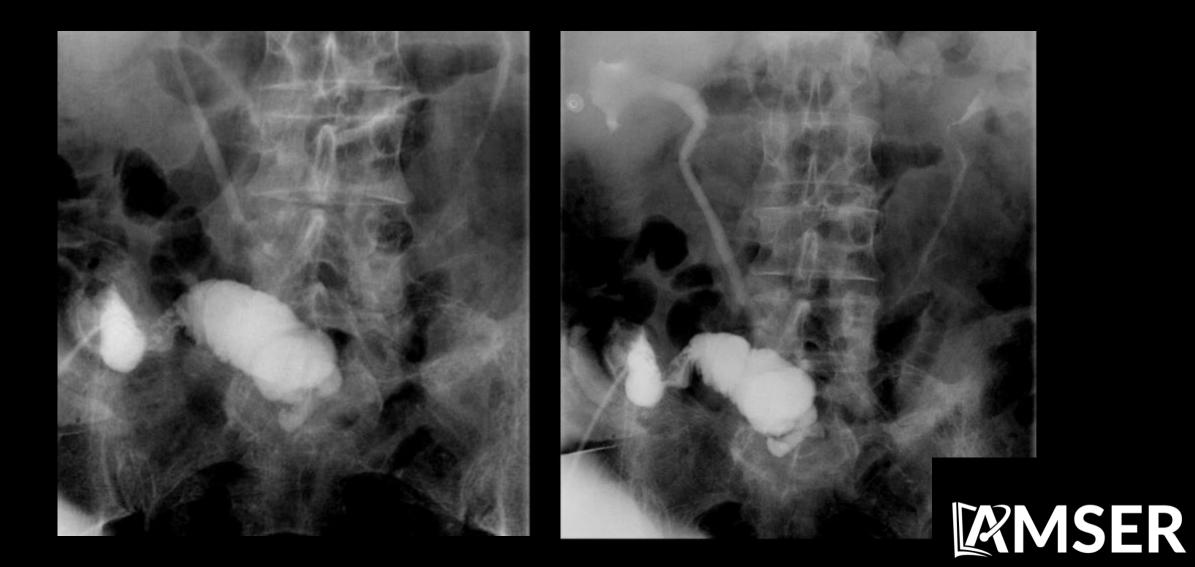
Hyperattenuating rim in the pelvicalyceal system

Perinephric fat stranding



Prior CT Findings continued (unlabeled)

Findings continued (labeled)


Right ureter; wit ureteroenteric anastomosis

Calcification within ileal conduit and possible calculus within distal left ureter Left ureter; with ureteroenteric anastomosis. Mild to moderate ureterectasis The previous CT findings were from an OSH; concerning for stricture at the anastomosis

Loopography was performed to assess for stricture/outflow obstruction

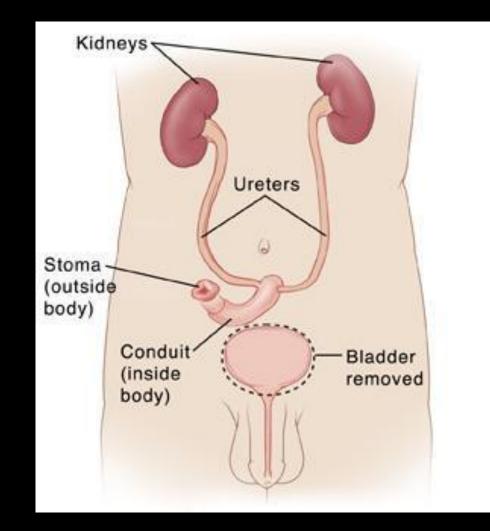
Loopography Findings continued (unlabeled)

Loopogram Findings continued (labeled)

Renal collecting systems mildly opacified, mildly dilated with blunting of calyces lleal conduit, opacifying well

Bilateral ureteral contrast opacification after retrograde flow

Final Diagnosis:


- Retrograde flow from conduit to renal collecting systems excludes stricture at ureteroenteric anastomosis
- Non-obstructing calcifications within ileal conduit, likely postoperative calcific changes
- Small calcification at left distal ureter, likely dystrophic calcification versus non-obstructive calculus, unchanged from previous study
- Urothelial thickening in the renal pelvicalyceal system, nonspecific for inflammatory process
- AKI etiology is likely not post-renal or obstructive

Ileal Conduits

For the purpose of urinary diversion

- Indications
 - s/p cystectomy
 - Neurogenic bladder with threatening renal impairment
 - Radiation injury to bladder
 - Intractable incontinence
- Many short- and long-term complications
 - Bowel leak/obstruction most common (60%)
 - Renal impairment/AKI (20%)

CT Urogram vs. Loopogram

CT Urogram enhanced and unenhanced images

- Scout images & split bolus IV contrast
 - Split bolus protocol to reduce radiation exposure
- Capture of nephrographic and urographic phases in a single image acquisition
- Excretory phase visualizes renal collecting system and ureters
- Identification of **pathology** or **disease recurrence**

Fluoroscopic Loopogram

- Visualization of collecting systems and ureters (renal-independent study)
- Used to identify post-operative leaks and exclude stricture at the ureteroileal anastomosis

Complications of Ileal Conduits

		Median time to occurrence, years					
Complication	Total (%)	(range)	Probability of experiencing complication				
	and the set of the first of the set		5 years	10 years	15 years	20 years	
Any complication	643 (60.8%)	1.1 (0.1-25.7)	58.9%	69.6%	75.8%	79.9%	
Bowel	215 (20.3)	1.5 (0.1-17.3)	18.0%	23.2%	29.3%	31.0%	
Bowel Obstruction	169 (16.0)	1.7 (0.1-17.3)	14.3%	18.5%	24.0%	25.7%	
Abscess	38 (3.6)	0.9 (0.1-21.6)	3.3%	4.2%	4.9%	4.9%	
Fistula	29 (2.7)	1.9 (0.1-21.1)	2.5%	2.9%	4.1%	4.9%	
Renal	213 (20.2)	2.2 (0.1-29.6)	17.9%	24.1%	29.6%	34.4%	
→ Renal failure (Cr>2.0 mg/dL)*	201 (19.0)	2.3 (0.1-29.6)	16.7%	22.8%	28.1%	33.0%	
Loss of functional renal unit	22 (2.1)	2.4 (0.2-23.5)	1.8%	2.9%	3.6%	3.6%	
Dialysis-dependence	26 (2.5)	8.4 (0.9-23.5)	1.5%	3.1%	4.8%	6.8%	
Infectious	174 (16.5)	1.8 (0.1-25.7)	15.2%	20.3%	24.0%	27.0%	
→ Pyelonephritis	127 (12.0)	2.3 (0.1-25.7)	10.3%	14.4%	17.8%	20.7%	
Recurrent urinary tract infections	73 (6.9)	2.1 (0.1-21.6)	6.7%	9.2%	10.4%	11.8%	
Stomal	163 (15.4)	2.3 (0.2-23.4)	14.9%	20.7%	23.8%	25.0%	
Peristomal hernia	147 (13.9)	2.4 (0.2-18.3)	13.8%	19.2%	22.3%	23.6%	
Stomal stenosis	22 (2.1)	9.2 (0.2-23.4)	1.1%	1.5%	3.4%	3.4%	
Urolithiasis	162 (15.3)	2.5 (0.1-24.9)	14.6%	19.9%	23.3%	27.4%	
Upper tract urolithiasis	141 (13.3)	2.5 (0.1-24.9)	12.2%	16.6%	20.2%	24.3%	
Conduit stones	48 (4.5)	3.0 (0.2-22.9)	4.8%	6.4%	7.5%	7.5%	
Metabolic	135 (12.8)	1.9 (0.1-25.9)	11.0%	14.9%	17.8%	22.0%	
Metabolic acidosis	108 (10.2)	1.0 (0.1-24.2)	9.8%	12.1%	14.1%	16.1%	
Vitamin B12 Deficiency	32 (3.0)	9.1 (0.4-25.8)	1.3%	3.2%	4.8%	8.0%	
Structural	122 (11.5)	1.5 (0.1-25.0)	10.6%	13.0%	16.7%	18.6%	
Anastomotic stricture	106 (10.0)	1.1 (0.1-25.0)	10.1%	11.5%	13.5%	14.8%	
Conduit stricture	25 (2.4)	9.4 (0.2-24.1)	0.9%	2.1%	4.7%	5.9%	

RULE

OUT

Loopogram

- Foley catheter inserted into the stoma
 - Balloon is inflated with 5 to 8 mL of contrast material
- Instill contrast through catheter via hand injection
- Under fluoroscopy, observe for retrograde flow
- Contrast opacificatiom of ureters and pelvicalyceal system
- Mild ureterectasis, pelvicaliectasis, with mild hydronephrosis may be normal in a patient with urinary diversion. This dilation occurs because there is no surgical construct to prevent reflux at the time the conduit is created.

References:

Anderson CB, McKiernan JM. Surgical Complications of Urinary Diversion. Urol Clin North Am. 2018 Feb;45(1):79-90. doi: 10.1016/j.ucl.2017.09.008. PMID: 29169453.

Catalá V, Solà M, Samaniego J, Martí T, Huguet J, Palou J, De La Torre P. CT findings in urinary diversion after radical cystectomy: postsurgical anatomy and complications. Radiographics. 2009 Mar-Apr;29(2):461-76. doi: 10.1148/rg.292085146. PMID: 19325059.

Khalil el-SA. Long term complications following ileal conduit urinary diversion after radical cystectomy. J Egypt Natl Canc Inst. 2010 Mar;22(1):13-8. PMID: 21503002.

Moomjian LN, Carucci LR, Guruli G, Klausner AP. Follow the Stream: Imaging of Urinary Diversions. Radiographics. 2016 May-Jun;36(3):688-709. doi: 10.1148/rg.2016150180. Epub 2016 Apr 8. PMID: 27058730.

Shimko MS, Tollefson MK, Umbreit EC, Farmer SA, Blute ML, Frank I. Long-term complications of conduit urinary diversion. J Urol. 2011 Feb;185(2):562-7. doi: 10.1016/j.juro.2010.09.096. Epub 2010 Dec 18. PMID: 21168867.