AMSER Rad Path Case of the Month:

22-year-old with chest pain and mediastinal mass

Alice Kim, MS4 Virginia Commonwealth University School of Medicine

> Dr. Peter J. Haar MD, PhD VCU Health Dept Radiology MSK

Dr. Rachit Shah VCU Health Dept Surgery Division of Cardiothoracic Surgery

> Dr. Alden Chesney VCU Health Dept Pathology

Dr. Gregory Hundley VCU Health Dept of Internal Medicine Division of Cardiology

Patient Presentation

• HPI:

- 22-year-old male with history of dural venous thrombosis currently on chronic coumadin therapy.
- Presents to PCP for chronic pain management, reports a 3-day history of chest pain & tachycardic in 140s.
- Sharp chest pain with radiation down left arm, worse with inspiration/when supine.
- Associated palpitations.
- Denies: SOB, N/V, diaphoresis, LE edema/pain, abdominal pain, changes in bowel/bladder habits.

• PMHx:

- Atypical hemolytic uremic syndrome with positive MCP/CD46 mutation.
- Dural venous sinus thrombosis, intracranial hemorrhage, seizures.
- SLE
- Secondary HTN
- **Medications:**
 - Warfarin, gabapentin, hydroxychloroquine, levetiracetam, mycophenolate mofetil.

Pertinent VS, PE and Labs

VS: BP 174/122 HR 137 RR 24 O2 97%. temp 37 C

PE:

- Gen: no acute distress, AOx4
- HEENT: nl
- CV: no murmurs, nl perfusion, no edema, regular rhythm, tachycardic
- Pulm: CTAB, non-labored respirations, equal and clear breath sounds
- Chest wall: no tenderness
- MSK: no swelling or deformities, tender to palpation over L shoulder

Labs:

- CRP 10.8 (H), repeat 10 (H)
- Cr 1.3 (pt's baseline)
- Troponin 5.78 (H), repeat 5.7 (H)
- WBC 12, plt 280

Other pertinent history:

last check for Coumadin was therapeutic at 2

MSER

- Renal function at baseline
- No history of PE or DVTs

What Imaging Should We Order?

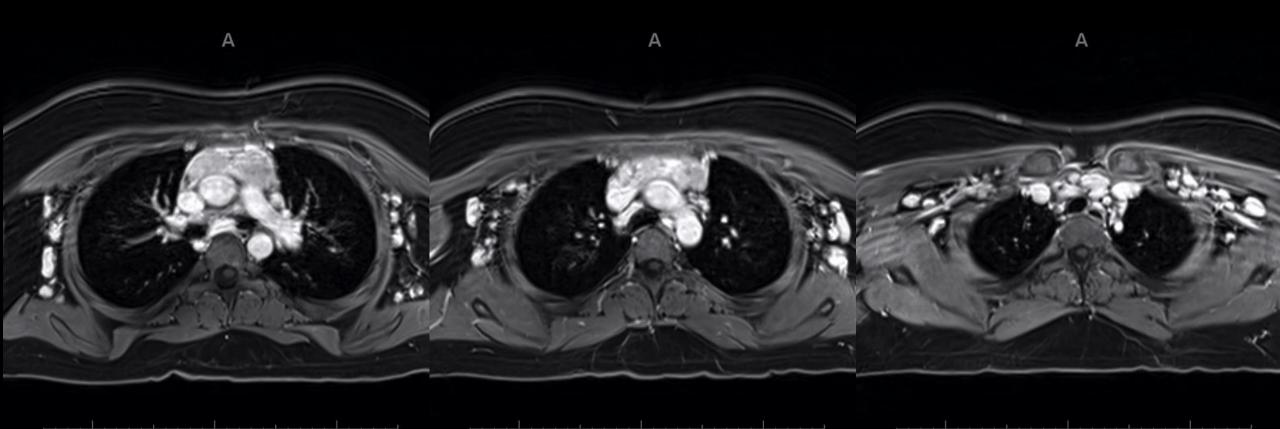
Revised 2020

American College of Radiology ACR Appropriateness Criteria® Acute Nonspecific Chest Pain-Low Probability of Coronary Artery Disease

<u>Variant 1:</u>

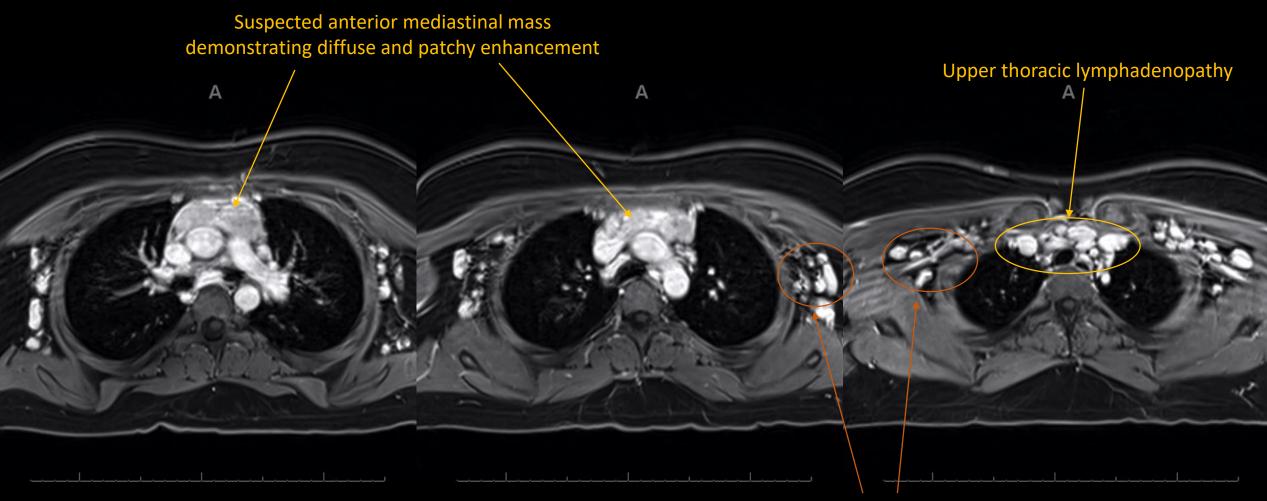
Acute nonspecific chest pain; low probability of coronary artery disease. Initial imaging.

Procedure	Appropriateness Category	Relative Radiation Level
Radiography chest	Usually Appropriate	•
CTA coronary arteries with IV contrast	Usually Appropriate	ଷଷଷ
US echocardiography transthoracic resting	May Be Appropriate (Disagreement)	0
Radiography ribs and thoracic spine	May Be Appropriate	00
CT chest with IV contrast	May Be Appropriate	888
CT chest without and with IV contrast	May Be Appropriate	***
CT chest without IV contrast	May Be Appropriate	***
CTA chest with IV contrast	May Be Appropriate	***
V/Q scan lung	May Be Appropriate	ଜନ୍ ଦନ
US echocardiography transesophageal	Usually Not Appropriate	0
US echocardiography transthoracic stress	Usually Not Appropriate	0
Arteriography coronary	Usually Not Appropriate	***
Fluoroscopy barium swallow and upper GI series	Usually Not Appropriate	୫୫ ୫
MRA chest without and with IV contrast	Usually Not Appropriate	0
MRA chest without IV contrast	Usually Not Appropriate	0
MRA coronary arteries without and with IV contrast	Usually Not Appropriate	0
MRA coronary arteries without IV contrast	Usually Not Appropriate	0
MRI heart function and morphology without and with IV contrast	Usually Not Appropriate	0
IVICE near function and morphology without IV contrast	Usually Not Appropriate	0
MRI heart with function and inotropic stress without and with IV contrast	Usually Not Appropriate	0
MRI heart with function and inotropic stress without IV contrast	Usually Not Appropriate	0
MRI heart with function and vasodilator stress perfusion without and with IV contrast	Usually Not Appropriate	0
Nuclear medicine scan gallbladder	Usually Not Appropriate	**
CT heart function and morphology with IV contrast	Usually Not Appropriate	ଡ଼ଡ଼ଡ଼ଡ଼
SPECT or SPECT/CT MPI rest and stress	Usually Not Appropriate	ବବବବ

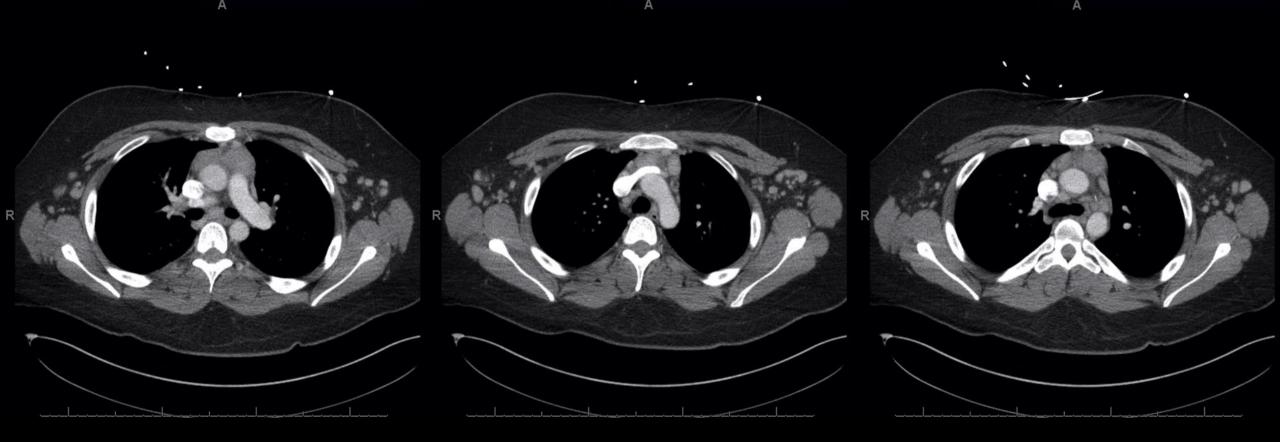

Chest XR PA + lateral xray performed day 1

CT chest w/ contrast performed day 4

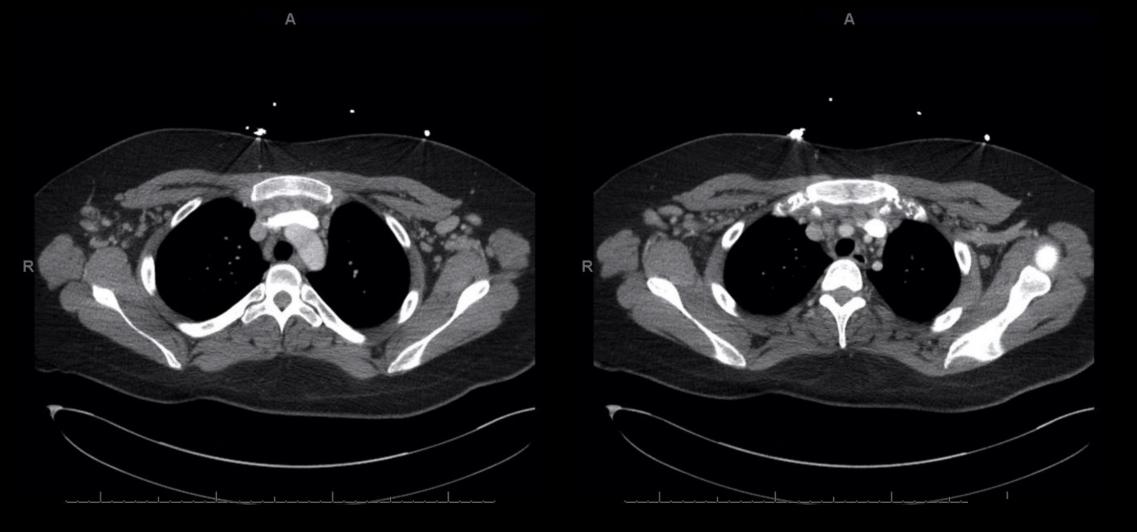
Cardiac MRI w/o & w/ contrast performed day 2



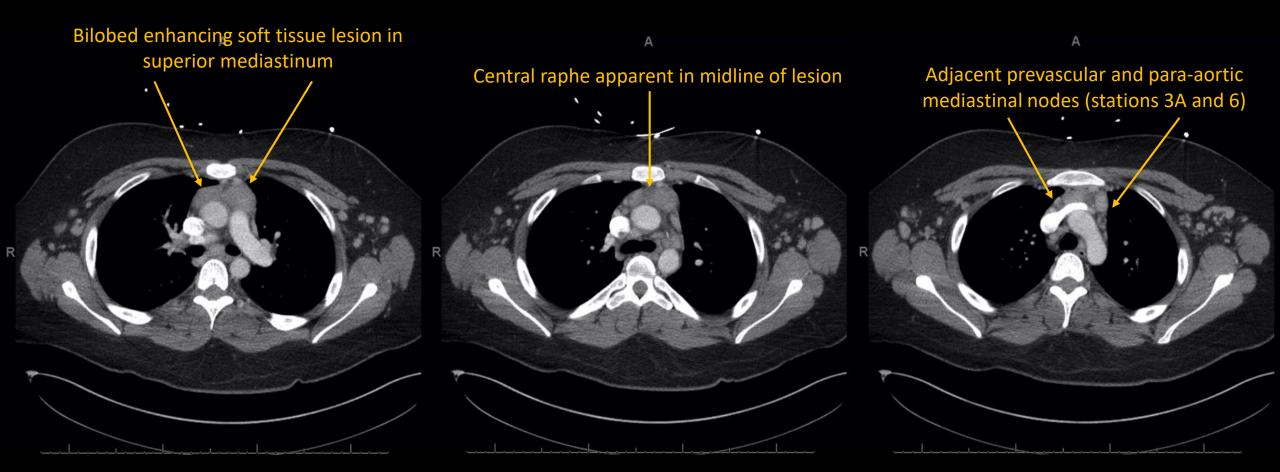
Cardiac MRI Findings: Unlabeled


Cardiac MRI Findings: Labeled

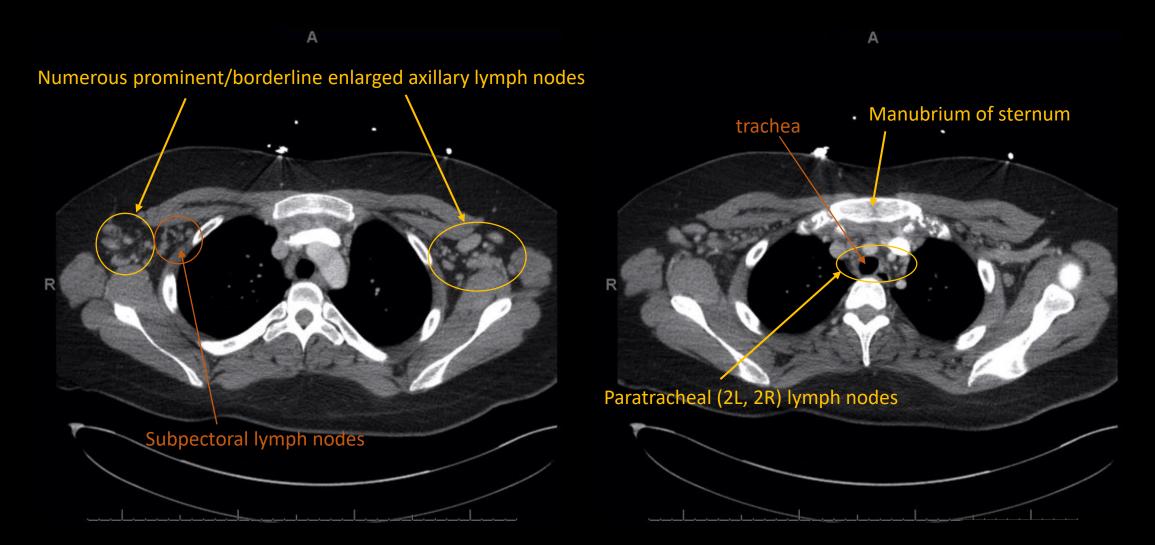
Axillary lymphadenopathy



CT Chest Findings part 1: Unlabeled



CT Chest Findings part 2: Unlabeled



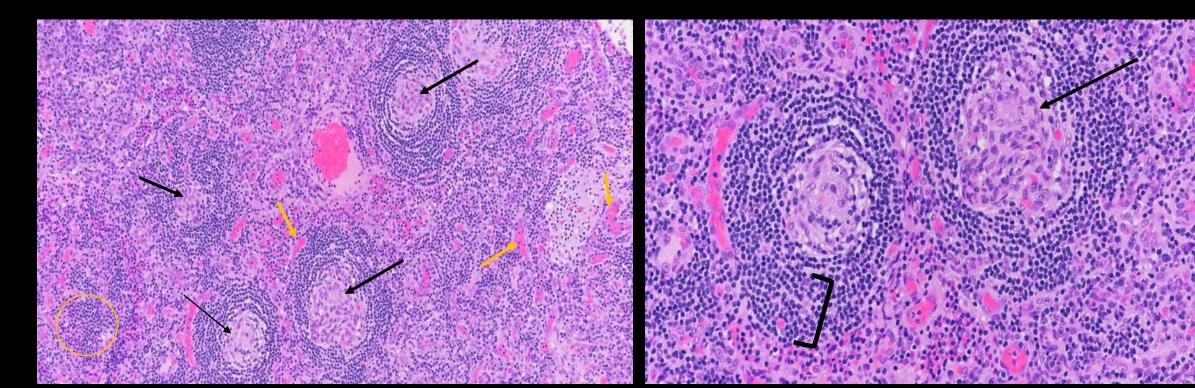
CT Chest part 1: Labeled

CT Chest Findings part 2: Labeled

*Patient subsequently underwent left video-assisted thoracoscopic surgery (VATS) with biopsy of mediastinal mass.

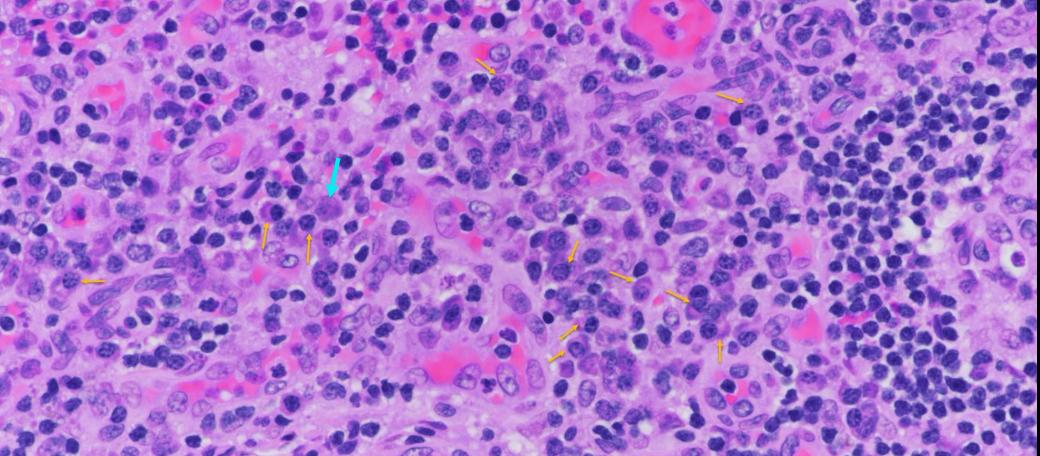
DDX

Mediastinal mass:

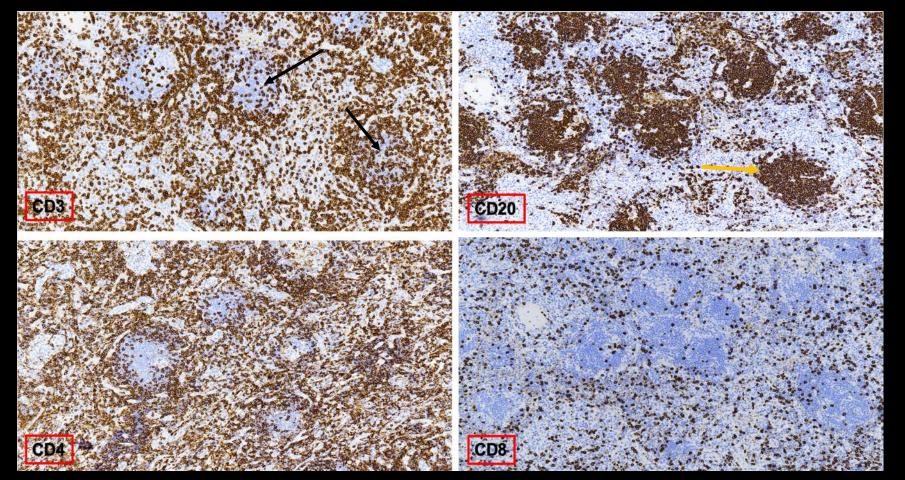

- Prominent thymus
- Thymic hyperplasia
- Other thymic-based lesions

Diffuse lymphadenopathy:

- Reactive lymphadenopathy
- Connective tissue disorder
- Lymphoma
- Infection such as HIV


Histopathology H&E

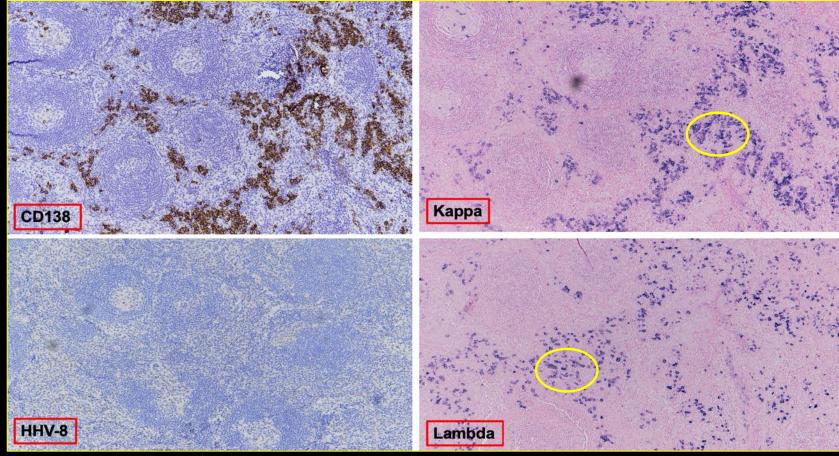
Enlarged lymph nodes with numerous follicles (black arrows) throughout the cortex and medulla. Expansion of interfollicular areas with sheets of plasma cells (yellow circle) and proliferation of blood vessels (yellow arrows). High power view of reactive-appearing follicle (black arrow). Mantle zone comprised of concentric rings (bracket) of small lymphocytes ("onion skin")


Histopathology cont. H&E

Interfollicular areas/medulla occupied by numerous mature plasma cells with eccentric nuclei and prominent Golgi (yellow arrows) with occasional binucleate forms (blue arrow).

Immunostaining

- Brown-black color in cell membranes indicative of positive staining (immunoperoxidase reaction positive).
- Light blue is Hematoxylin counterstain (immunoperoxidase reaction negative).


CD3: T-cells present around and between atrophic follicles (black arrows)CD4: Helper T-cells*

CD20: atrophic B-cell follicles (yellow arrow) **CD8**: Suppressor/cytotoxic T-cells*

RMSER

*brown immunostaining denotes positivity for these elements)

Immunostaining cont.

Plasma cells are polyclonal (normal kappa/lambda ratio with about 2x as many kappa+ plasma cells compared to lambda+ plasma cells.

CD138: stain showing plasma cells* **HHV-8**: negative

Kappa/lambda light chains (yellow circles) by in situ hybridization (purple staining positive)

RMSER

*brown immunostaining denotes positivity for these elements

Final diagnosis:

Castleman disease: HHV-8 positive plasma cell variant

Case Discussion: Castleman disease

- What is it?
 - A nonclonal lymphoproliferative disorder and cause of nonneoplastic lymphadenopathy.
- Disease manifestation:
 - Diverse and able to affect any body region (neck, chest, abdomen, pelvis).
 - Can mimic malignant or benign pathologies.
- Variants:
 - Hyaline vascular type (classic) more likely to be unicentric disease (UCD) & commonly found in mediastinum (enhancing mass that displaces surrounding structures).
 - Plasma cell variant (less common) more likely to be multicentric, a systemic disease that manifests as enhancing diffuse lymphadenopathy.
 - Castleman's associated with HHV-8 often multicentric disease (MCD).

Case Discussion cont.

- Pathophysiology:
 - MCD likely attributed to deregulation of inflammatory mediators, particularly IL-6 (driven by HHV-8 in some cases)
 - Resulting in systemic manifestation of disease due to lymphovascular proliferation
 - IL-6 is a cytokine produced by T/B-cells, monocytes, endothelial cells and fibroblasts.
 - HHV-8/Kaposi's sarcoma-associated herpesvirus (KSHV) is a lymphotropic virus, and nearly all HIV-associated CD are HHV-8 positive.
 - KSHV encodes for proteins implicated in cell cycle regulation, apoptosis and cytokine signaling.

Case Discussion cont.

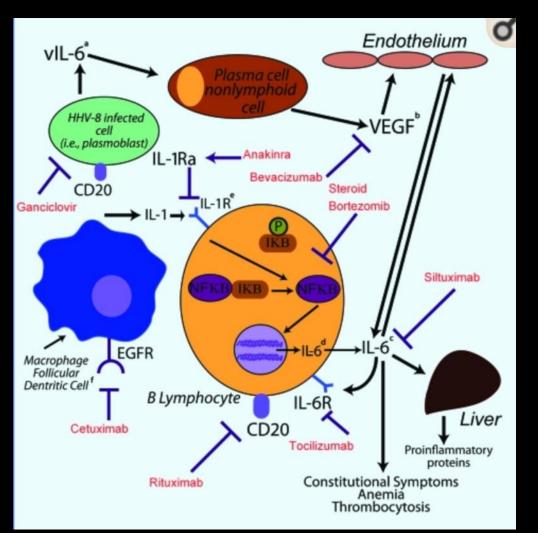


Figure referenced from: El-Osta HE, Kurzrock R. Castleman's disease: from basic mechanisms to molecular therapeutics. *Oncologist*. 2011;16(4):497-511.

Proposed model of CD pathophysiology with the involvement of different mechanisms.

HHV-8 infected cells secrete IL-6
 ↓
 Production of VEGF by
 nonlymphoid or plasma cell
 ↓
 VEGF-induced lymphoid and
 vascular proliferation

Case Discussion: Castleman disease

Treatment:

- Standard for UCD is surgical resection (excellent prognosis with complete excision).
- Radiation therapy good secondary option.

• Primary for MCD HHV-8+ is Rituximab.

Entity	Primary Treatment	Additional Treatment Options	Additional Considerations
UCD	Surgical excision (13,93)	Radiation if patient is not surgical candi- date (94) Neoadjuvant rituximab if lesion too large at time of diagnosis (54,95)	Preoperative embolization of large feeding vessels may be performed before surgery (96)
MCD (HHV8 positive)	Rituximab (monoclonal anti- body that binds to CD20 antigen and decreases ex- ogenous production of IL-6 by HHV8 virus) (97–101)	 Antiherpesvirus medications (zidovudine, valacyclovir) (102–104) Single-agent chemotherapy (etoposide) (104) Interferon-α (105) Multiagent chemotherapy (ie, CHOP or CVP) often used in cases of rapid progression (11) 	 Rituximab can exacerbate Kaposi sarcoma (92) Coexistent HIV infection should be adequately managed (100,105) Rituximab leads to 11-fold decrease in lymphoma development in this population (106)
MCD (HHV8 negative)	Siltuximab (monoclonal antibody that binds endog- enous IL-6, which drives lesion growth in this popu- lation) (54,107–109)	Thalidomide (54,110) Steroids (dexamethasone, prednisolone) (54,111) Bortezomib (proteasome inhibitor that decreases VEGF and IL-6 levels) (112,113) Tocilizumab (IL-6 receptor antagonist) (111) Rituximab (11,97,107) Multiagent chemotherapy (113)	Siltuximab is only FDA-approved immunomodulator for treatment of MCD (108) Rituximab less effective in this pop- ulation since it is predominantly effective against exogenous IL-6 created by HHV8 virus
MCD (POEMS syndrome)	High-dose immunosuppres- sive agents and steroids (114)	Autologous peripheral blood stem cell transplantation (54) Bortezomib (115) Thalidomide (114) Lenalidomide (54CkyMschka11	

- Clinical Features
 - Dependent on uni vs. multicentric, subtype (hyaline vascular vs. plasma cell), coexisting infx (HHV-8 and/or HIV), other associated disorders.
 - Common: systemic sxs (fever, weight loss), lymphadenopathy, organomegaly, renal dysfunction, pulmonary edema.

References

- 1. American College of Radiology. ACR Appropriateness Criteria Acute Nonlocalized Abdominal Pain. Last Revised 2020. Retrieved from: <u>https://acsearch.acr.org/docs/69401/Narrative/</u>
- 2. Balakrishna, J. Castleman disease. PathologyOutlines.com website. http://www.pathologyoutlines.com/topic/lymphnodescastleman.html. Accessed September 10th, 2020.
- 3. Bonekamp D, Horton KM, Hruban RH, Fishman EK. Castleman disease: the great mimic. *Radiographics*. 2011;31(6):1793-1807. doi:10.1148/rg.316115502
- 4. Castleman B, Iverson L, Menendez VP. Localized mediastinal lymphnode hyperplasia resembling thymoma. Cancer 1956;9(4):822–830.
- 5. Dispenzieri A, Armitage JO, Loe MJ, et al. The clinical spectrum of Castleman's disease. Am J Hematol 2012;87(11): 997–1002.
- 6. El-Osta HE, Kurzrock R. Castleman's disease: from basic mechanisms to molecular therapeutics. *Oncologist*. 2011;16(4):497-511.
- 7. Fetica B, Pop B, Lisencu C, et al. Castleman Disease. A Report of Six Cases. *Clujul Med*. 2014;87(3):192-197.
- 8. Ye B, Gao SG, Li W, et al. A retrospective study of unicentric and multicentric Castleman's disease: a report of 52 patients. Med Oncol 2010;27(4):1171–1178.

