AMSER Case of the Month December 2022

35-year-old male with a one-month history of progressive abdominal pain

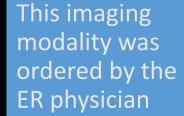
Jace Buxton MS4
Dr. Jeffrey Olpin, MD
University of Utah

Patient Presentation

- HPI: A 35-year-old male presents to the ED complaining of a one-month history of progressive aching, poorly localized abdominal pain, with associated weight loss, diarrhea, and facial flushing. He reports severe pain, rating it as a 7/10 in severity with mild improvement with hydrocodone. He cannot identify any specific triggers. He endorses easy bruisability, dyspnea on exertion, and denies any other associated symptoms
- Medications: Hydrocodone-acetaminophen
- Past Medical History: Unremarkable
- Social History: No alcohol or tobacco use. No work-related hazardous exposures

Objective Data

- Vitals
 - Within normal limits
- Pertinent Exam Findings:
 - Abdomen non-distended, diffusely tender to palpation, slightly worse in epigastric area, non-peritonitic.
- CBC
 - Unremarkable
- CMP
 - Unremarkable


What Imaging Should We Order?

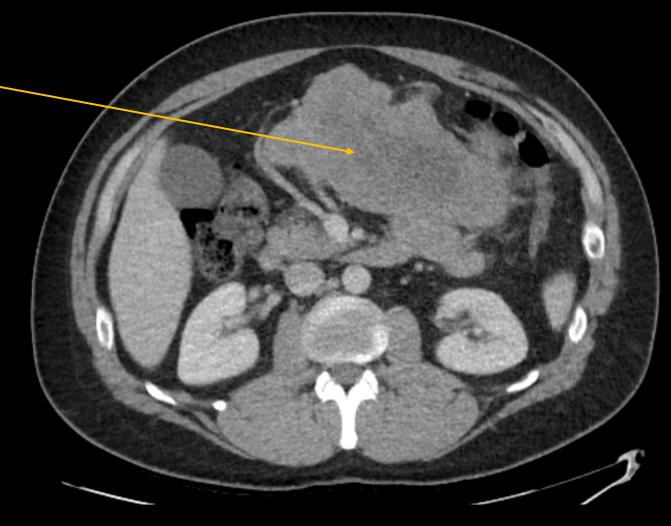
Select the applicable ACR Appropriateness Criteria

<u>Variant 4:</u> Acute nonlocalized abdominal pain. Not otherwise specified. Initial imaging.

Procedure	Appropriateness Category	Relative Radiation Level
CT abdomen and pelvis with IV contrast	Usually Appropriate	≎≎≎
CT abdomen and pelvis without IV contrast	Usually Appropriate	≎≎≎
MRI abdomen and pelvis without and with IV contrast	Usually Appropriate	0
US abdomen	May Be Appropriate	0
MRI abdomen and pelvis without IV contrast	May Be Appropriate	0
CT abdomen and pelvis without and with IV contrast	May Be Appropriate	❖❖❖❖
Radiography abdomen	May Be Appropriate	₩
FDG-PET/CT skull base to mid-thigh	Usually Not Appropriate	♥♥♥
WBC scan abdomen and pelvis	Usually Not Appropriate	❖❖❖❖
Nuclear medicine scan gallbladder	Usually Not Appropriate	⊕ ⊕
Fluoroscopy upper GI series with small bowel follow-through	Usually Not Appropriate	₩
Fluoroscopy contrast enema	Usually Not Appropriate	⊕⊕⊕

Findings (unlabeled)

Findings (unlabeled)



Findings (labeled)

- There is an 8.5 x 16.8 x 12.2 cm peritoneal soft tissue mass, with minimal heterogeneity and central hypoattenuation
- Minimal adjacent fat stranding
- No ascites or focal fluid collections

Findings (labeled)

 Soft tissue mass appears to be a well-defined conglomerate of rounded peritoneal masses

Coronal image, CT with contrast

Sagittal image, CT with contrast

Lobulated pleuralbased soft tissue mass along the right posterior hemidiaphragm

Differential Diagnosis

Most Common Less Common Least Common

Metastatic Disease

- Lymphoma
- Peritoneal carcinomatosis

Other Secondary Peritoneal Neoplasms or Tumor-like Lesions

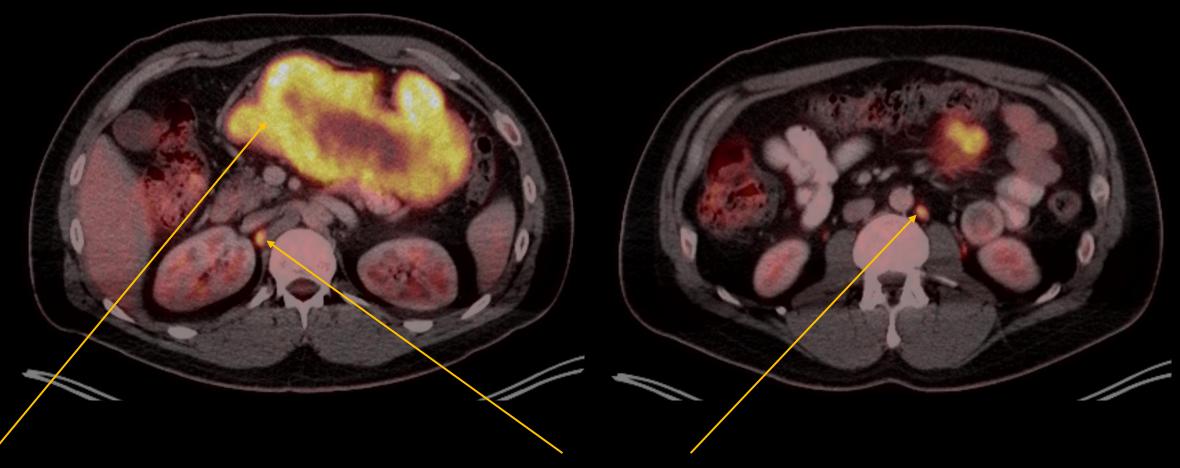
- Mesenteric desmoid
- Mesenchymal tumors
 - GIST

Primary Peritonea Neoplasms

- Mesothelial tumors
 - Malignant peritoneal mesothelioma
- Epithelial tumors
- Uncertain origin
 - Desmoplastic small round cell tumor

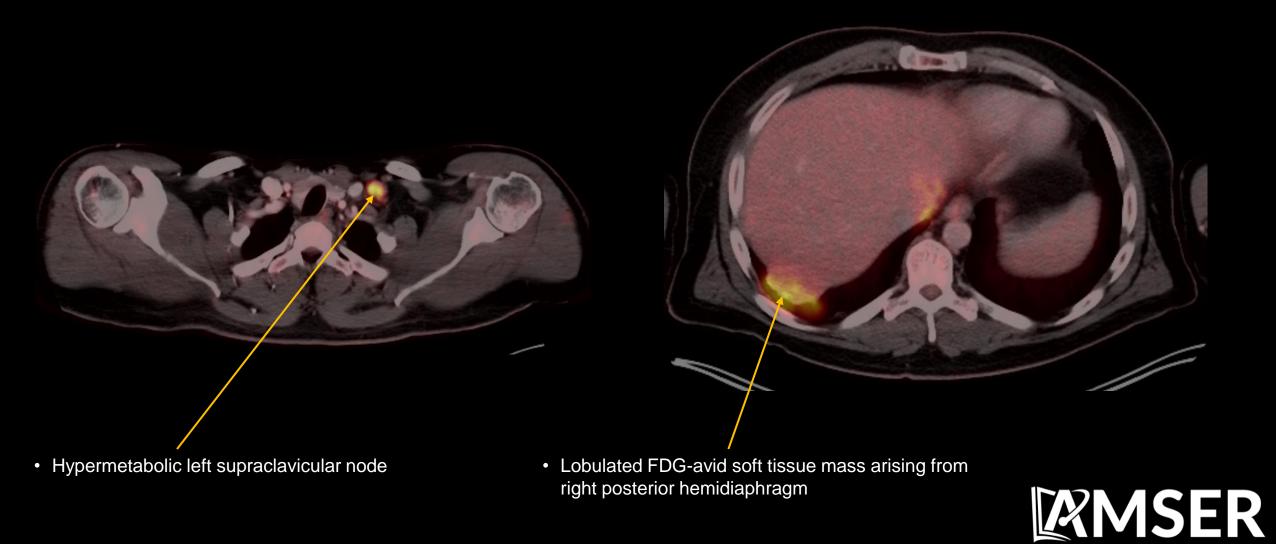
Biopsy and Pathological Analysis

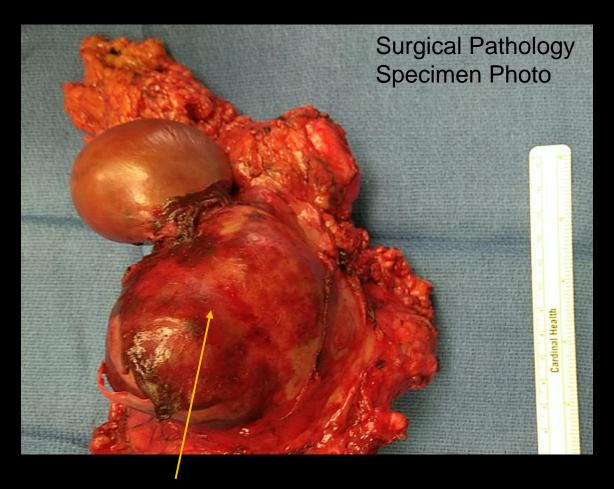
- Histological analysis
 - High-grade neoplasm with small round blue cell morphology, numerous mitoses, and extensive necrosis
- Immunophenotypic staining
 - Positive: pankeratin, desmin, CD99, and P16
 - Negative: S100, WT1, chromogranin, synaptophysin
- FISH
 - Positive EWSR1 rearrangement
- Sarcoma NGS Fusion Panel
 - EWSR1-WT1 fusion detected



Final Dx:

Desmoplastic Small Round Cell Tumor


Follow-up Imaging (PET/CT Axial Images)


 Heterogenous soft tissue mass with a rim of metabolic activity and central necrosis • Scattered enlarged FDG-avid retroperitoneal lymph nodes

Follow-up Imaging (PET/CT Axial Images)

Surgical Resection and Treatment

CT with contrast, Coronal image

 s/p partial gastrectomy, omentectomy, right hemidiaphragm resection, and HIPEC with cisplatin Multiple residual enlarged retroperitoneal nodes s/p surgical resection and polychemotherapy

Case Discussion

Epidemiology

- Desmoplastic small round cell tumor is a rare neoplasm, with an incidence of ~0.3 cases/million
- Most commonly occurs in the peritoneal cavity of adolescent and young adult males
- Mean age at diagnosis is 19 years

Clinical Presentation

 Vague and non-specific. Typically presents with crampy non-localized abdominal pain, diarrhea, weight loss, and abdominal distention

Pathophysiology

- Unknown histogenesis and tissue of origin. Related to the Ewing sarcoma family of tumors
- Caused by a de-novo translocation of t(1;22)(p13;q12), that leads to the fusion of the Ewing sarcoma RNA binding protein 1 (EWSR1) and Wilm's tumor suppressor (WT1) genes

Case Discussion

Imaging Features

- Solitary bulky peritoneal mass, often >10 cm may be the only imaging finding seen on initial presentation
 - Less commonly presents with infiltrative appearance and diffuse peritoneal thickening ± malignant ascites
- Heterogenous appearance on CT, typically with central hypoattenuation due to intra-tumoral necrosis or hemorrhage ± scattered punctate calcifications
- T1 heterogenous hypointensity and T2 heterogenous hyperintensity on MR imaging

Diagnosis

- Requires biopsy and histopathologic analysis
- Histologic features: sharply demarcated nests of small round cells embedded in a hypervascular desmoplastic stroma
 - Immunohistochemistry: Typically positive for desmin, EMA, and cytokeratin
- RNA sequencing/fusion panel: Diagnostic confirmation with evidence of EWSR1-WT1 fusion

Treatment

- Surgical resection + radiation therapy and polychemotherapy
- Prognosis is poor, even with treatment
 - 3-year survival rate less than 30%

References:

- 1. Devecchi A, De Cecco L, Dugo M, et al.. The genomics of desmoplastic small round cell tumor reveals the deregulation of genes related to DNA damage response, epithelial-mesenchymal transition, and immune response. Cancer Communications. Cancer Communications; 2018;38:70.
- 2. Levy AD, Arnáiz J, Shaw JC, Sobin LH. Primary Peritoneal Tumors: Imaging Features with Pathologic Correlation. RadioGraphics 2008;28(2):583-607. doi: 10.1148/rg.282075175.
- 3. Levy AD, Manning MA, Miettinen MM. Soft-Tissue Sarcomas of the Abdomen and Pelvis: Radiologic-Pathologic Features, Part 2—Uncommon Sarcomas. RadioGraphics. RadioGraphics;. 2017;37:797—812https://dx.doi.org/10.1148/rg.2017160201.
- 4. Pickhardt PJ, Bhalla S. Primary Neoplasms of Peritoneal and Sub-peritoneal Origin: CT Findings. RadioGraphics 2005;25(4):983-995. doi: 10.1148/rg.254045140
- 5. Rana V, Sharma S, Kamala R, et al.. Round cell tumors: Classification and immunohistochemistry. Indian Journal of Medical and Paediatric Oncology. Indian Journal of Medical and Paediatric Oncology; 2017;38:349.
- 6. Sheth S, Horton KM, Garland MR, Fishman EK. Mesenteric Neoplasms: CT Appearances of Primary and Secondary Tumors and Differential Diagnosis. RadioGraphics. RadioGraphics;. 2003;23:457–473https://dx.doi.org/10.1148/rg.232025081.