AMSER Case of the Month February 2022

HPI: 38 y/o M with chronic brain hemorrhage, persistent fevers, and non-improving neurological examination

Haley Hartman MS4, Penn State College of Medicine Meaghan Dougher MS4, Penn State College of Medicine

Puneet Kochar, MD Penn State Health

Patient Presentation

- HPI: 38 y/o M with previous severe traumatic brain injury from assault ~1 year ago and subsequent left-sided acquired skull defect, now with chronic brain hemorrhage s/p cranioplasty and post-op epidural hematoma, herniation, and duret hemorrhage requiring second operation, s/p septic shock post-op now resolved, now with no improvement in neurological status post stabilization
- ROS: persistent fevers, unresponsive, unable to obtain further ROS
- PMHx: Hemophilia B
- PSHx: emergent hemicraniectomy and drainage following traumatic brain injury, cranioplasty, emergent evacuation of epidural hematoma and replacement of PEEK cranioplasty
- Family Hx: positive for hemophilia
- SocHx: prior hx of smoking (1 ppd), illicit drug use, and mild alcohol use
- Pertinent Physical Exam Findings:
 - Neuro: tracheostomy in place, does not open eyes spontaneously or to pain, no vocalization, pupils sluggish bilaterally but equal, minimal movement to noxious stimuli, not improving

Pertinent Labs

- CBC
 - WBC 4.63, Hgb 8.2 (L), Hct 28.4 (L), Plt 74 (L)
 - MCV 89.6, RDW 21.4 (H)
- BMP
 - Na 136, K 4.2, Cl 101, HCO3 22, BUN 19, Cr 0.65 (L), Glu 116 (H)
 - Anion gap 13
 - Ca 8.7
 - Mg 2.1
 - PO4 3.2
- PT 14.9 (H)

What Imaging Should We Order?

Select the applicable ACR Appropriateness Criteria

Acute Mental Status Change, Delirium, and New Onset Psychosis

Variant 4:Persistent or worsening mental status change despite clinical management of the suspected
underlying cause (intoxication, medication-related, hypoglycemia, sepsis, etc) or acute
change in mental status of unknown cause. Initial imaging.

Procedure	Appropriateness Category	Relative Radiation Level
MRI head without and with IV contrast	Usually Appropriate	0
MRI head without IV contrast	Usually Appropriate	0
CT head without IV contrast	Usually Appropriate	• • •
CT head without and with IV contrast	May Be Appropriate	***
CT head with IV contrast	Usually Not Appropriate	* * *

This imaging modality was ordered

Findings (unlabeled)

Axial T2 MRI

Our Patient

Normal Comparison

Explanation: T2 hyperintensity found in bilateral inferior olivary nuclei of the medulla (bright white signal within red circles). Normal comparison shows homogenous grey.

Findings (labeled)

Axial T2 MRI

Normal Comparison

Our Patient

Final Dx:

Bilateral Hypertrophic Olivary Degeneration

Background

- Hypertrophic Olivary Degeneration (HOD) is a rare condition that is characterized by a unique pattern of trans-synaptic degeneration
- Lesion occurs in the triangle of Guillain and Mollaret
 - Corners of the triangle include:
 - Red nucleus
 - Inferior olivary nucleus
 - Contralateral dentate nucleus
- Interruption of connections within the triangle of Guillain and Mollaret results in hypertrophy of inferior olivary nucleus
- Etiologies vary: posterior fossa surgery, tumor, hemorrhage, traumatic brain injury, etc.

Clinical Presentation & Treatment

- Patients are frequently asymptomatic when diagnosed
- Diagnosis commonly made incidentally with routine imaging surveillance
- If symptoms develop, they are commonly related to cerebellar dysfunction:
 - palatal tremor (most common ~20-45% of cases)
 - dentato-rubral tremor
 - ocular myoclonus
- Usually self-limited, but treatment and prognosis ultimately related to etiology
- Medical treatment can be considered for symptoms like palatal tremor (anti-seizure meds), but usually deferred due to limited effectiveness/side effects

Radiographic Features

- Radiographic features typically do not present until several months after initial insult
- MRI with T2-weighted and T2-FLAIR sequences are the preferred method of visualization
- T2 signal increases several months after insult and can be seen for 3-4 years on imaging
- Hypertrophy occurs about 1 year after insult and can be seen for 3-4 years on imaging
- Three stages:
 - T2 hyperintensity without olivary swelling
 - T2 hyperintensity and olivary swelling
 - Olivary swelling subsides but T2 hyperintensity persists

References:

- Onen MR, Moore K, Cikla U, Ucer M, Schmidt B, Field AS, Baskaya MK. Hypertrophic Olivary Degeneration: Neurosurgical Perspective and Literature Review. World Neurosurg. 2018 Apr;112:e763-e771. doi: 10.1016/j.wneu.2018.01.150. Epub 2018 Jan 31. PMID: 29382617.
- Van Eetvelde R, Lemmerling M, Backaert T, Favoreel N, Geerts B, Sommeling C, Hemelsoet D, Dekeyzer S. Imaging Features of Hypertrophic Olivary Degeneration. J Belg Soc Radiol. 2016 Jul 25;100(1):71. doi: 10.5334/jbr-btr.1065. PMID: 30151471; PMCID: PMC6100676.
- Wang H, Wang Y, Wang R, Li Y, Wang P, Li J, Du J. Hypertrophic olivary degeneration: A comprehensive review focusing on etiology. Brain Res. 2019 Sep 1;1718:53-63. doi: 10.1016/j.brainres.2019.04.024. Epub 2019 Apr 23. PMID: 31026459.

