AMSER Case of the Month January 2022

HPI: 43 y/o F presents with acute on chronic knee pain

Jonathan Gan, MS4

Case Western Reserve University School of Medicine

Sofija Conic, MD, PGY-2

Cleveland Clinic Foundation

Deborah Brahee, MD

Cleveland Clinic Foundation

Patient Presentation

- **HPI**: 43 y/o female presents to clinic with bilateral 5/10 shooting knee pain for past 2-3 weeks. Has had on-and-off pain for 30+ years, but recently unable to bear weight and perform ADLs.
- ROS: Numbness and tingling in knees. No fevers, chills, or rashes.
- PMHx: IBS, chronic pain syndrome, asthma, fibromyalgia, vitamin D deficiency
- PSHx: knee and ankle "bone spurs" s/p excision, osteosarcoma of right rib s/p resection (no known follow-up), cholecystectomy, hysterectomy w/ bilateral salpingectomy
- FHx: diabetes, HTN, COPD, breast and ovarian cancer (maternal aunt and grandmother)

Patient Presentation

Pertinent physical exam findings:

- General: A&O x3, no acute distress
- Cardiac: RRR, normal S1 S2
- Musculoskeletal:
 - Mild TTP in right posterior calf
 - No knee point tenderness or effusion
 - Full ROM, negative Lachman, posterior drawer, and varus/valgus laxity in bilateral knees
 - Lower extremity motor, sensation, and reflexes intact bilaterally
 - Negative straight-leg raise bilaterally
 - DP and PT pulses 2+ bilaterally
 - Full hip ROM bilaterally

What Imaging Should We Order?

Select the applicable ACR Appropriateness Criteria

<u>Variant 1:</u> Adult or child greater than or equal to 5 years of age. Chronic knee pain. Initial imaging.

Procedure	Appropriateness Category	Relative Radiation Level
Radiography knee	Usually Appropriate	⊕
Image-guided aspiration knee	Usually Not Appropriate	Varies
CT arthrography knee	Usually Not Appropriate	•
CT knee with IV contrast	Usually Not Appropriate	⊕
CT knee without and with IV contrast	Usually Not Appropriate	€
CT knee without IV contrast	Usually Not Appropriate	⊕
MR arthrography knee	Usually Not Appropriate	0
MRI knee without and with IV contrast	Usually Not Appropriate	0
MRI knee without IV contrast	Usually Not Appropriate	0
Bone scan knee	Usually Not Appropriate	ଡ ଡଡ
US knee	Usually Not Appropriate	0
Radiography hip ipsilateral	Usually Not Appropriate	⊕⊕⊕

Frontal, lateral, and merchant views were ordered

Patient was referred to orthopedic surgery

Findings (unlabeled)



Undertubulation of metadiaphyses

Findings (labeled)

Final Dx:

Multiple Hereditary Exostoses

Overview:

- Characterized by 2+ skeletal exostoses
 - Common locations include distal femur and proximal humerus
- Autosomal dominant
 - EXT1 and EXT2 tumor suppressor gene mutations
 - Incomplete penetrance
 - Males > females
- Typically present in 2nd decade

Imaging findings:

- X-ray
 - Multiple osteochondromas w/ variable skeletal distribution
 - Broadened shaft (undertubulation) at ends of long bones
 - Malignant transformation (lifelong risk as high as 25%)
 - New cortical irregularity
 - Continued growth after skeletal maturity has been reached
 - Bony destruction
 - Large soft tissue component
- MRI
 - Can be considered as follow-up imaging in cases of soft tissue impingement and concern for malignant transformation

Exostoses:

- Benign growth of bone extending outwards from surface
- With cartilage cap = osteochondroma
- Growth patterns
 - Sessile or pedunculated
 - At the metaphysis and projecting away from epiphysis
 - Broadening of metaphysis from which it arises
 - Variable appearance of cartilage cap (thin/thick, regular/irregular)

Tubulation:

- Normal adult long bones should have <u>diaphyseal</u> narrowing
- This process occurs due to (1) periosteal bone resorption and (2) endosteal bone formation at the metaphysis during longitudinal bone growth

Undertubulation	Overtubulation
 Wide, broad appearance of metadiaphyses (Erlenmeyer flask deformity) Can be seen in: Gaucher's disease Thalassemia Multiple hereditary exostoses 	 Narrow, gracile appearance of metadiaphyses Can be seen in: Neurofibromatosis Osteogenesis imperfecta Immobilization Muscular dystrophy

Management and prognosis:

- Monitoring for malignant transformation
 - Spine, scapula, pelvis, and proximal femur are more commonly associated with malignant transformation
- Surgical excision can be considered in cases of:
 - Pain/discomfort
 - Deformity or growth disruption
 - Cosmetics
 - Malignant transformation
- Good prognosis and generally static disease in adulthood

References

- 1. Murphey MD, Choi JJ, Kransdorf MJ, Flemming DJ, Gannon FH. Imaging of osteochondroma: variants and complications with radiologic-pathologic correlation. Radiographics. 2000 Sep-Oct; 20(5):1407-34. doi: 10.1148/radiographics.20.5.g00se171407. PMID: 10992031.
- 2. D'Arienzo A, Andreani L, Sacchetti F, Colangeli S, Capanna R. Hereditary Multiple Exostoses: Current Insights. *Orthop Res Rev.* 2019;11:199-211. Published 2019 Dec 13. doi:10.2147/ORR.S183979
- 3. Wuyts W, Schmale GA, Chansky HA, et al. Hereditary Multiple Osteochondromas. 2000 Aug 3 [Updated 2020 Aug 6]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021.
- 4. Kok HK, Fitzgerald L, Campbell N, et al. Multimodality imaging features of hereditary multiple exostoses. *Br J Radiol*. 2013;86(1030):20130398. doi:10.1259/bjr.20130398