Aine Marie Kelly Department of Radiology Division of Cardiothoracic Radiology University of Michigan

REVIEWING AN EDUCATION PAPER: DIFFERENT AND CRITICAL ELEMENTS

Educational Literature

- Medical Education a rapidly growing field of research
- Educational research often criticized for poor theoretical frameworks, study designs and meaningful outcomes
- Deficiencies in research methods and reporting quality identified
- People from many fields of interest publish in education

Cook DA .Quality of reporting of experimental studies in medical education: a systematic review. Med Ed 2007;41:737-45

Education Literature Review

- Peer review lies at the core of academic literature
- Main mechanism journals use to ensure quality
- Guidelines in literature for reporting RCT, prospective studies, diagnostic accuracy and meta analyses but none for medical education research
- Educational research criticized for not informing practice
 - Simulation, web based learning
- Lack of scientific approach
 - Results of one study a foundation for the next

Cook DA. Quality of reporting of experimental studies in medical education: a systematic review. Med Ed 2007;41:737-745.

Medical Education Research

Manuscript Review

- Problem Statement
- Relevance
- Research Design
- Sample and sampling
- Instrumentation and data collection
- Results
- Discussion and Conclusion
- Title
- Abstract
- Writing, presentation

Bordage G. Reasons reviewers accept and reject manuscripts. Academic Medicine 2001;76(9):889-96

Top Reasons to Reject Medical Education Research Manuscripts

- Statistics (inappropriate, incomplete, insufficiently described)
- Over-interpretation of results
- Instrument (inappropriate, suboptimal, insufficiently described)
- Sample too small or biased
- Text too difficult to follow or understand
- Insufficient or incomplete problem statement
- Inaccurate or inconsistent data reported
- Review of literature (inadequate, incomplete, inaccurate, outdated)
- Insufficient data presented
- Defective tables or figures Bordage G. Reasons reviewers accept and reject manuscripts. Academic Medicine 2001;76(9):889-96

Top Reasons to Accept Medical Education Research Manuscripts

- Problem (important, timely, relevant, critical)
- Well written manuscript
- Well designed study

- Review of literature (thoughtful, focused, up to date)
- Sample size sufficiently large
- Practical useful implications
- Interpretation took into account the limitations of the study
- Problem well stated and formulated
- Novel, unique approach to data analysis Bordage G. Reasons reviewers accept and reject manuscripts. Academic Medicine 2001;76(9):889-96

Types of Medical Education Research Projects

- Descriptive (observational) "what was done?"
 - New educational intervention, assessment
 - No comparisons, no outcomes
- Clarification (Model formation, building theory, prediction) "how does this work and why?"
 - Build on previous work, confirm or refute
- Justification (Testing) "does it work?"

 Compare PBL to traditional learning Cook DA . Description, justification and clarification: a framework for classifying the purposes of research in medical education . Med Ed 2008;42:128-33. Problem Statement / Research
question / Relevance

- Should be clearly stated
- Title clear / matches project
- Abstract concise and accurate
 - Is it an important problem or question?
 - Is it a novel teaching method or approach?
 - Does it advance the field of education?
 - Is the project do-able given the resources?

Eva K. Issues to consider when planning and conducting educational research. J Dent Ed 2004;68(3):316-323

Research Design, Sample and Sampling

Experimental

- Randomized allocation
- Pre test post test control group
- Post test only control group
- Solomon four group design
- Quasi-experimental
 - Non equivalent control group design
 - Separate sample pre test post test design
- Time series designs
 - One group only post test design
 - One group pre test post test design
 - Static group comparison design

Lynch DC. A rationale for using synthetic designs in medical education research. Advances in health sciences education 2000;5:93-103.

StudyDesignRO1XO2(pre and post test)

R= residents

- O1 = first assessment (dependent variable)
- X = intervention (independent variable)
- O2 = second assessment (dependent variable)

Lynch DC. A rationale for using synthetic designs in medical education research. Advances in health sciences education 2000;5:93-103.

Experimental Design Pre test post test control group R O1 X O_2 O_1 R O_2 Post test control group R O1 Х R O1Solomon four group design O1 X R O_2 R O_1 O_2 O1R X ()1 Lynch DC. A rationale for using synthetic designs in medical education research. Advances in health sciences education 2000;5:93-103.

Quasi-Experimental Design Non equivalent control group 01 X O_2 R R 01 O_2 Separate sample pre test post test design O_1 R X R O1Separate sample pre test post test design 01 R X R Х O1 R O1 R O1

Lynch DC. A rationale for using synthetic designs in medical education research. Advances in health sciences education 2000;5:93-103.

Pre-Experimental Design One group only pre test post test design R 01 X 02 One group only post test design R O_1 R O1Static group comparison design O_1 R Х O_1 R

Lynch DC. A rationale for using synthetic designs in medical education research. Advances in health sciences education 2000;5:93-103.

Outcome Measures, Results

- Use existing proxy measures (such as board exams), or create a new measure
- Affect student and patient satisfaction
- Behavior did program improve practical skills, communication skills, compitency rates etc
- Cognition knowledge on GPA or aptitude tests, final exam scores, degree of transfer of theory into clinical practice (OSCE), patient education etc
- Attitudes life long learning, staying up to date
- Higher order skills non interpretative skills, clinical decision making etc

Eva K. Issues to consider when planning and conducting educational research. J Dent Ed 2004;68(3):316-323

Qualitative Research

- To investigate complex social processes that are difficult to measure quantitatively
- To capture essential aspects of a phenomenon from the perspective of study participants
- To uncover beliefs, values and motivations that underlie individual health behaviors
- To develop sound quantitative measurement processes or instruments or to study special populations

Curry LA. Qualitative and mixed methods provide unique contributions to outcomes research. Circ 2009;119(10):1442-52.

Qualitative Research: Data Collection

In depth interviews

- 1 to 1 interaction between researcher and study participant
- Explore individual experiences and perceptions in great detail
- In person, over the phone, or online
- Respondent directs the course of conversation
- Discussion guides (data collection instruments) can be broad or deep
- Focus groups
 - Guided discussions, in small groups with a common characteristic
 - Group interaction can generate unique insights into understanding shared experiences
 - Facilitate discussion of sensitive topics among members
 - In person, over the phone, and online
 - Discussion guides with 5 to 10 open ended questions
- Observation
- Document review

Curry LA. Qualitative and mixed methods provide unique contributions to outcomes research. Circ 2009;119(10):1442-52.

Instrumentation and Data Collection

Educational instrument

- New teaching method versus traditional PBL, computer web based training, simulation, interactive teaching files
- Assessment formative, summative
- Feedback yes, no
- Quantitative data
 - Satisfaction levels (Likert scale ordinal)
 - Practical skills attained (yes, no)
 - Competent (passed certifying exam yes/no)
 - Pre and post test scores (numeric)
- Qualitative data main themes that emerge

Statistical Analysis

- Sample sizes <30, >100, parametric or not
- Survey participation rates

- Satisfaction levels (Likert scale ordinal)
 Wilcoxon or T-test
- Practical skills attained (yes, no), Competent (passed certifying exam – yes/no)
 - Chi squared test or Fisher exact test
- Pre and post test scores (numeric, grades ordinal)
 - T-test (paired or non paired)

Discussion and Conclusion

- Participation rates
- Interpretation of the results
- Compare the current findings to prior work and see if there is agreement or not, and if not, why not?
- Limitations

- Implications for educational practice
- Future directions

Eva K. Issues to consider when planning and conducting educational research. J Dent Ed 2004;68(3):316-323

Questions? Comments?

Aine Marie Kelly Department of Radiology Division of Cardiothoracic Radiology University of Michigan

REVIEWING AN EDUCATION PAPER: DIFFERENT AND CRITICAL ELEMENTS